The basis of the most commonly performed nonlinear FEM analyses in CAE software is the theory of plasticity. How did this theory originate? In which fields is it applied? What are the benefits of using plasticity-based calculations, and what are the prospects for the development of simulations that incorporate plasticity?
The origins of theoretical work on permanent deformation, known as plasticity, date back to the second half of the 19th century. However, it was only after World War II that the development of this field accelerated significantly. This was led by the following milestones:
Unified theory of plasticity includes such phenomena as:
The starting point for all considerations within this framework is the stress-strain curve obtained in a strength laboratory through tensile tests on the material being studied.
The 1960s witnessed rapid advancements in computer technology, which enabled the application of previously developed theories to the computer simulation of plastic phenomena. As computing speeds increased and device memory expanded, the accuracy of Finite Element Method (FEM) calculations improved, as did the accessibility of computers necessary for such simulations.
In the 1970s, the first commercial software was developed, transitioning from predominantly linear calculations to advanced nonlinear analyses, including plasticity calculations. In the decades that followed, computer developments allowed the use of FEM spatial models and rapid iterations of nonlinear processes for large models.
Based on the simulation of nonlinear interactions on FEM spatial models, such tasks as:
Including plasticity in simulations and calculations provides a number of benefits related to issues such as:
Already today, calculations implemented on the basis of plasticity theory are of great importance for the design of durable and safe structures. It can be expected that in the coming years the importance of such simulations will grow in such contexts as:
Feel free to contact Endego’s CAE team. We perform computationally demanding advanced simulations for automotive and other sectors.
Software-Defined Vehicles (SDVs) are transforming the automotive industry, replacing hardware limitations with dynamic, software-driven features. Through cloud connectivity, real-time updates, and AI integration, SDVs redefine vehicles as intelligent, continuously evolving systems that shape the future of mobility. So, how can we prepare for this revolution?
Read moreAs the automotive industry shifts towards sustainability, internal combustion engines (ICEs) remain crucial in various sectors. Despite the rise of electric vehicles, ICE manufacturers are focused on reducing harmful emissions through innovative technologies. Explore the key non-engine solutions driving emissions reduction and helping ICEs meet stringent standards for a cleaner future.
Read moreAs the industry moves toward sustainable mobility, internal combustion engines (ICEs) are advancing to meet strict environmental standards and remain competitive with electric powertrains. Car manufacturers use a range of internal technologies that help reduce emissions and ensure the ongoing relevance of ICEs in a low-emission future.
Read more