The basis of the most commonly performed nonlinear FEM analyses in CAE software is the theory of plasticity. How did this theory originate? In which fields is it applied? What are the benefits of using plasticity-based calculations, and what are the prospects for the development of simulations that incorporate plasticity?
The origins of theoretical work on permanent deformation, known as plasticity, date back to the second half of the 19th century. However, it was only after World War II that the development of this field accelerated significantly. This was led by the following milestones:
Unified theory of plasticity includes such phenomena as:
The starting point for all considerations within this framework is the stress-strain curve obtained in a strength laboratory through tensile tests on the material being studied.
The 1960s witnessed rapid advancements in computer technology, which enabled the application of previously developed theories to the computer simulation of plastic phenomena. As computing speeds increased and device memory expanded, the accuracy of Finite Element Method (FEM) calculations improved, as did the accessibility of computers necessary for such simulations.
In the 1970s, the first commercial software was developed, transitioning from predominantly linear calculations to advanced nonlinear analyses, including plasticity calculations. In the decades that followed, computer developments allowed the use of FEM spatial models and rapid iterations of nonlinear processes for large models.
Based on nonlinear simulations and FEM spatial models, tasks are being executed as:
Including plasticity in simulations and calculations provides a number of benefits related to issues such as:
Already today, calculations implemented on the basis of plasticity theory are of great importance for the design of durable and safe structures. It can be expected that in the coming years the importance of such simulations will grow in such contexts as:
Feel free to contact Endego’s CAE team. We perform computationally demanding advanced simulations for automotive and other sectors.
Special-purpose vehicles play an important role in many industrial sectors, from construction and agriculture to public transport. They are characterised by specific technical requirements which make the design of special-purpose vehicles a complex engineering challenge. As a leader in the field of industrial design, Endego offers comprehensive services in the development of special vehicles and their components, responding to the needs of customers from various sectors, private and public.
Read moreIn the automotive industry, aerodynamics plays an increasingly important role in designing modern vehicles. For mass-produced cars, key commercial goals include high load capacity, speed and driving comfort, while simultaneously reducing fuel consumption and emissions. Therefore, understanding and effectively applying aerodynamics is a fundamental aspect of the design process. This is especially true with the growing number of electric and autonomous vehicles. Let’s find out which basic terms are worth knowing, why aerodynamics is so important for cars and how computer simulations help engineers optimise the airflow around vehicles.
Read moreReducing noise and vibration is one of the key issues in modern vehicle design. With NVH (Noise, Vibration, Harshness) analyses, engineers create cars that are more comfortable, safer and meet rigorous standards. How do engineering simulations support the vehicle design process in eliminating unwanted vibration and sound?
Read more